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Abstract. We derive low-density series expansions for the mean size of finite clusters on 
an anisotropic triangular lattice. By varying a bond density parameter this model includes 
site percolation on the square and triangular lattices and interpolates smoothly between 
the two. We identify the critical line and our results are consistent with the critical 
exponent y being constant along this line. 

1. Introduction 

There have been a number of recent discussions of the question of universality of 
critical exponents in bond-site percolation, using real space renormalisation group 
(Nakanishi and Reynolds 1979, Napiorkowski and Hemmer 1980, Guttmann and 
Whittington 1982) and series analysis methods (Agrawal et a1 1979). The renormali- 
sation group treatments provide strong evidence for universality on the square lattice, 
the square lattice with next-neighbour bonds and the anisotropic triangular lattice. 
These renormalisation group methods are less effective at accurately locating the 
critical surface, but Agrawal e ta l ( l979)  have used series analysis methods to determine 
the critical line for bond-site percolation on the square lattice. 

In this paper we shall describe a series analysis investigation of a bond-site 
percolation problem on an anisotropic triangular lattice. A triangular lattice can be 
distorted (see figure 1) to form a square lattice in which each face has an additional 
diagonal bond, so that each lattice site has coordination number six. However, we 
can now distinguish two classes of bonds (drawn as full and broken lines in figure 1). 
We shall call the horizontal and vertical bonds ‘square bonds’ to distinguish them 
collectively from the diagonal bonds. We consider the percolation problem in which 
square bonds are present (or active) with probability one, diagonal bonds are present 
with probability d and sites are present with probability s. (This is a particular case 
of the more general problem considered in the previous paper by Guttmann and 
Whittington (1982) in which square bonds were present with probability b, but that 
model was studied only by real space renormalisation group methods.) If d = 0 we 
have site percolation on the square lattice while d = 1 gives site percolation on the 
triangular lattice. Varying d allows us to pass from the square to the triangular lattice 

/I Permanent address: Department of Mathematics, University of Newcastle, NSW 2308, Austrailia. 

0305-4470/82/072259 + 08$02.00 @ 1982 The Institute of Physics 2259 



2260 G M Torrie, D S Gaunt, A J Guttmann and S G Whittington 

Figure 1. An anisotropic triangular lattice deformed into a square lattice with additional 
diagonal bonds. 

problem. For a range of values of d = 0 (0.1) 1 we have estimated the critical site 
density s,(d). Plotting s,(d) against d then determines the critical line, separating the 
non-percolating region from the percolating region. This critical line corresponds to 
the intersection of the critical surface with the plane b = 1 in Guttmann and Whittington 
(1982). The location of this critical line has also been estimated by Hoshen er a1 
(1979), using Monte Carlo methods. We also study the behaviour of the critical 
exponent y characterising the divergence of the mean size of finite clusters along this 
line. Our results are consistent with y being independent of d. 

2. Series derivation 

We have enumerated all bond-site clusters containing up to thirteen sites. We first 
use the method described by Martin (1974) to generate all clusters which are strongly 
embeddable in the triangular lattice. Each of these triangular lattice site clusters can 
be viewed as a cluster strongly embeddable in the square lattice, containing in addition 
zero or more diagonal bonds. For each such cluster we determine the generalised 
site perimeter consisting of 

(i) r perimeter sites connected to the cluster by at least one square bond, 
(ii) tl perimeter sites connected to the cluster only by exactly one diagonal bond, 

(iii) tz perimeter sites connected to the cluster only by exactly two diagonal bonds. 
Not more than two diagonal bonds can be incident upon any one site. An example 

of a 10-site cluster with r = 16, t l  = 2, fZ = 1 and three diagonal bonds is shown in 
figure 2. To each triangular lattice site cluster with R sites and k diagonal bonds there 
corresponds 2k potential bond-site clusters, each with the same site perimeter (r ,  tl, r 2 ) .  
The factor 2k arises since each of the k diagonal bonds can be present or absent. 
Each of these combinations in which Ediagonal bonds are removed without decompos- 
ing the cluster into two or more connected components produces a bond-site cluster 
with h = k - li diagonal bonds. Such a bond-site cluster appears with probability 

(2.1) 
where s and d are the (uniform) densities of sites and diagonal bonds, respectively. 

The determination of which sets of diagonal bonds may be deleted without 
destroying the connectedness of the cluster (i.e. the sets of diagonal bonds which are 
not cut sets of the cluster) is simplified because those diagonal bonds appearing as a 
bond in an elementary triangle (see figure 1) may be independently deleted without 
affecting the connectivity. When all such diagonal bonds are removed, the resulting 

and 

p = s (1 - s)'d (1 - d)? 1 - sd)"( 1 - 2sd + sd2)'2 
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Figure 2. A ten-site cluster on the anisotropic triangular lattice with three diagonal bonds. 
The perimeter sites shown as circles are 'connected' to the cluster through at least one 
horizontal or vertical bond. The perimeter sites shown as triangles are 'connected' to the 
cluster only through precisely one diagonal bond and those shown as squares only through 
precisely two diagonal bonds. 

cluster will contain from zero to three circuits of five or more edges (for clusters with 
less than fourteen sites). If the resulting cluster is a tree, no remaining diagonal bonds 
can be removed. Resulting clusters with at least one circuit and at least one diagonal 
bond are 'trimmed' by successively removing vertices of degree one and edges incident 
on such vertices. Any diagonal bonds removed in this trimming are essential and 
must be present in all derived bond-site clusters. The number of possible topologies 
of clusters which still contain a diagonal bond after trimming is sufficiently small that 
such clusters can be handled by special purpose subroutines, or counted by hand. 
Those cases treated by hand counting were checked independently by at least three 
of us. 

If we write c (n ,  h, E, r, tl, t2) as the number of bond-site clusters (per site) with n 
sites, h occupied diagonal bonds between cluster sites, unoccupied diagonal bonds 
between cluster sites, and generalised site perimeter (r, tl, r 2 ) ,  then the number of 
bond-site clusters at site density s and diagonal bond density d is given by 

where p is given by (2.1) and the summation is over all values of n, h, h; r, tl and t2 .  
We can define a generalised perimeter polynomial D n . h  by writing (2.2) as 

(2.3) 

This forms a useful check on the data since Dn&, 0) reduces to the perimeter 
polynomial for the site problem on the square lattice and ZhD,,(s, 1) reduces to the 
perimeter polynomial for the site problem on the triangular lattice. 

We can define the percolation probability P(s,  d )  as the probability that a randomly 
chosen occupied site is a member of an infinite cluster, and P(s,  d )  is then given by 

We note that all coefficients in a low-density expansion of P(s ,  d )  (i.e. in powers of 
s and d )  must be identically zero. This forms a further important check on the 
enumeration. 
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Agrawal et a1 (1979) have pointed out that the mean size of the cluster can be 
defined in several ways. We have chosen a definition based on the number of sites 
in the cluster, i.e., 

(2.5) 

Since we have configurational data on clusters with up to and including thirteen sites, 
we can immediately expand (2.5) in powers of s and d, correct through order SI*. 
We have obtained an additional term, the coefficient of s13, by noticing that the 
coefficient of s13 in (2.4) must be identically zero (Sykes and Glen 1976). The series 
coefficients are given in table 1. The first column (the coefficients of do)  agrees with 
the coefficients given by Sykes and Glen (1976) for site percolation on the square 
lattice, and the row sums agree with the corresponding coefficients given there for 
the triangular lattice. 

3. Analysis of series 

We first consider the problem of locating the critical line which divides the non- 
percolating region from the percolating region in the (s, d )  unit square. The critical 
values of s when d = 0 or 1 are well known from a series study of site percolation on 
the square lattice, s,(O) = 0.593 (Sykes et a1 1976) and from the exact result, s,(l) = 1, 
for the triangular lattice site problem (Sykes and Essam 1964). 

Since s and d can be varied independently, we could approach the critical line 
from the low-density region in any desired direction. The experience of Agrawal et 
a1 (1979) for bond-site percolation on the square lattice seems to suggest that one 
should approach the critical line approximately perpendicularly and we have con- 
sequently chosen to vary s for a set of fixed values of d = 0 (0.1) 1.0. Since the line 
joining s,(O)=O.593 to s,(l)=O.5 will presumably be of small gradient in the d-s 
plane (with average absolute value <0.1), holding d fixed corresponds to a vertical 
approach to the critical line, which is therefore close to perpendicular. For each value 
of d we form a series for S in ascending powers of s and analyse each of these series 
using standard series analysis methods (Gaunt and Guttmann 1974), where we are 
making the standard assumption that near s , (d)  the function behaves like 

S(S, d ) - B ( d ) ( l  -s/sC(d))-Y'd'.  (3.1) 
As a first step we formed diagonal and off-diagonal Pad6 approximants to the 
logarithmic derivative of S. In each case these approximants indicate a singularity on 
the positive real axis with strongly divergent behaviour. However, there is also 
evidence of a singularity on the negative real axis, and additional singularities in the 
complex plane which are closer to the origin and which must eventually dominate the 
higher order terms in the series. The behaviour of the Pad6 approximants gradually 
deteriorates as d decreases but, at least for d 2 0.4, the estimates of the exponent 
associated with the physical singularity seem to be independent of d,  though the 
location of the physical singularity decreases smoothly as d increases for all d in the 
range 0-1. This is in agreement with the results of a real space renormalisation group 
treatment (Guttmann and Whittington 1982) and, for this reason, we tentatively 
assume that the exponent y is independent of d,  and form estimates of the critica! 
site density s , (d) ,  assuming a constant value for y. We choose the conjectured value 
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of y = 43/18 (den Nijs 1979, Nienhuis et af  1979, Pearson 1980). If this is the correct 
value of y, then [S(s, d)]”’ should be meromorphic, with the asymptotic form 

S(s, d) ’ lY  -B(d>’/’(l - -s /s , (d))- l  (3.2) 
and it should be possible to estimate s,(d) as poles of Pad6 approximants to S(s, d)””. 
Using this method we are able to obtain quite precise estimates of the critical points 
s,(d) for a variety of values of d. The critical curve derived in this way is given by 
table 2, in good agreement with the Monte Carlo estimates of Hoshen et a1 (1979). 

Table 2. Estimates of the critical line and critical amplitudes. 

~~ 

d sJd) (Padt) s,(d) (ratios) B ( d )  

0 0.593 - 0.583 
0.1 0.584 - 0.589 
0.2 0.576 - 0.626 
0.3 0.5663 0.57 0.638 
0.4 0.5580 0.56 0.675 
0.5 0.5485 0.55 0.693 
0.6 0.5390 0.54 0.705 
0.7 0.5295 0.53 0.722 
0.8 0.5196 0.52 0.733 
0.9 0.5097 0.51 0.743 

- 1 I 
1 .o 2 2 0.757 

In spite of the closer singularities both on and off the negative real axis, all terms 
which we have derived in the series are positive (though the distribution of singularities 
is such that this behaviour cannot persist), so that ratio methods may give useful 
estimates of the behaviour near the physical singularity. In fact we find that for d b 0.3 
the ratios are smooth and so may be extrapolated to give estimates of s,(d). These 
estimates are less precise than those from the Pad6 approximants to (3.2) but are 
nevertheless completely consistent with these values. We have summarised these 
results for s,(d) in table 2, where we believe the estimates to be correct up to an 
uncertainty in the last digit quoted, subject of course to the assumption that y = 43/18 
for all d. 

As a consistency check, we have used the values of s,(d) obtained above and then 
formed biased estimates of y in the usual way. That is, we have formed diagonal and 
off -diagonal Pad6 approximants to (s,(d) - s)(d/ds) In S(s, d )  and evaluated these at 
s = s,(d). Such approximants should give estimates of y(d) .  The results are consistent 
with a value of y between 2.38 and 2.43 for all values of d.  

We have also estimated the amplitudes B ( d )  in (3.1) assuming that y = 43/18 and 
the values of s,(d) given in table 2, by evaluating Pad6 approximants to (s,(d)- 
s)S(s, d)”’ - s,(d)B(d)”’. These estimates are also given in table 2. They are 
smoothly increasing as d increases. 

From table 2 we see that s,(d) is virtually a linear function of d, and in fact the 
curve lies above the straight line joining s,(O) to s,( 1) by at most +YO. This is in precise 
agreement with the corresponding results for the real space renormalisation group 
calculation of Guttmann and Whittington (1982), for which the curve also lies above 
the straight line by at most ;YO, though the values of s,(O) and s,(l) calculated there 
are lower than the values calculated here. The estimates of B(0) and B(1) given in 
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table 2 are some 17% higher than the corresponding estimates quoted by Sykes et a1 
(1976), but their estimates, though based on the same values of so used a higher value 
of y (2.43) to determine B. Thus our estimates of B, like those of s,(d) are expected 
to be correct up to an uncertainty in the last digit quoted, subject to the assumption 
that y = 43/18 for all d. 

4. Discussion 

We have considered an anisotropic triangular lattice in which one set of bonds 
(constituting a square lattice) is present with probability one. The bonds in the second 
set are present with probability d and, as d varies from zero to unity we pass from 
the square lattice to the triangular lattice. In addition, sites are present with probability 
s, and we then have a bond-site percolation process which, at the ‘diagonal’ bond 
densities d = 0 and d = 1, corresponds to site percolation on the square and triangular 
lattices. We have derived low-density series for the mean size of a finite cluster as a 
function of s and d,  using configurational data for clusters with up to thirteen sites. 
Using standard series analysis methods we have estimated the location of the critical 
line and our results are in good agreement with the Monte Carlo work of Hoshen et 
a1 (1979). In addition our results suggest that the critical exponent ( y )  is constant 
everywhere on this line. We have also estimated critical amplitudes and these vary 
smoothly along the critical line. 

Our results therefore support the universality of the critical exponents for site 
percolation on the square and triangular lattices as well as in this more general 
bond-site percolation process, in agreement with predictions from a real space renor- 
malisation group treatment for a more general model (Guttmann and Whittington 
1982). 

Apart from their interest from the point of view of universality in percolation 
processes, these results may also be of relevance to the problem of polymer gels. 
Bond-site percolation has been used as a model of this gelation process (Coniglio et 
al 1979) but the question of whether this process should be described by a percolation 
model or by a branching process model is contentious (Stauffer 1981). The work 
discussed here and in Guttmann and Whittington (1982) suggests that bond-site 
percolation with two different types of bonds, is in the same universality class as standard 
site and bond percolation processes. 
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